

Design of taste-masked primaquine – ion exchange resin fr-fi complex intended for pediatric formulations.

<u>Thiago F. Guimarães¹; Eduardo G. R. de Sousa¹; Rosane A. S. San Gil²; Leandro B. Borré²;</u> Alessandra L. Viçosa¹; Valéria G. da Silva³; Diogo D. do Nascimento¹; Laís B. da Fonseca³.

1 Fundação Oswaldo Cruz (FIOCRUZ), Instituto de Tecnologia em Fármacos (Farmanguinhos). Rua Sizenando Nabuco, 100 – Rio de Janeiro - RJ, Brazil. thiago.frances@fiocruz.br. 2 Universidade Federal do Rio de Janeiro, Instituto de Química (UFRJ-IQ), Rio de Janeiro – RJ, Brazil

3 Fundação Oswaldo Cruz (FIOCRUZ), Serviço de Equivalência e Farmacocinética. Rio de Janeiro – RJ, Brazil

PURPOSE	This study aims to determine the feasibility of primaquine-resin complex formation and evaluate the taste masking efficiency through an adapted dissolution test.	10.0 kHz ➤ Contact time of 8 ms.	300°C) ➤ non-hermetic aluminum pan	rpm ➤ UV-Vis measurement at 260nm	 UV probe measurement at every 5 seconds for 3 minutes. 				
RESULTS									

Drug Load Efficiency

Table 1: PRQ loading efficiency on ion exchange resin (IER) complex.

Drug:resin ratio (w:w)	Drug load eficiency (%)	Conclusion
1:2	95.09 ± 0.005	×
1:1	91.07 ± 1.03	
2:1	25.30 ± 0.02	×

The drug-to-resin ratio of 1:1 (w:w) demonstrated high drug loading efficiency at 91.07% ± 1.03%. The other ratios resulted in excess PRQ (2:1) or IER (1:2) after 180 minutes.

Differential scanning calorimetry analysis

Figure 1: DSC curves of PRQ, PP resin and PRQ-PP resinate

The PRQ resinate successfully achieved drug amorphization, which was confirmed by the absence of the endothermic event of the PRQ melting point (206°C) when compared to the salt form of the drug.

Figure 4: Structural formula of PRQ and PP ion exchange resin.

183.8 181.9 180.4	159.8 158.7	144.3	135.0 130.3 122.9 121.9	99.1 97.5 92.1	55.2	45.7	40.2 34.4 31.7 24.8 20.4 18.1
$\langle \cdot \rangle$	\mathbf{n}			NИ		· · · · · ·	$\langle 1 + 1 \rangle$

8.0

Solid-state NMR

Table 2: Chemical shifts (δ , ppm) of PRQ, PP resin and PRQ-PP resinate.

FINCRU7

CNPa

manguinhos

UFRJ

CARBON			F	PP resin ^a	PRQ-PP resinate ^a				
	δ, ppm ^a	δ, ppm ^b	δ, ppm ^c	δ, ppm ^d	δ, ppm ^e	δ, ppm ^f	δ, ppm	δ, ppm	
C6	159.5	162.9	157.9	159.6	160.6	158.1	-	159.0	
C8	140.6	141.1	141.8	145.2	146.4	149.7	-	144.0*	
C2	138.6	141.4	141.6	144.3	145.2	138.2	-	144.0*	
C8a	133.4	126.6	132.3	135.5	135.5	133.0	-	134.7	
C4	130.8	147.3	126.2	134.8	135.5	128.1	-	130.2	
C4a	123.9	133.8	125.0	130.0	130.2	127.2	-	121.7*	
C3	119.6	124.3	123.1	121.8	121.7	122.1	-	121.7*	
C7	100.7	106.2	105.5	96.9	96.5	104.5	-	97.7	
C5	94.0	97.6	102.1	91.9	96.1	102.1	-	91.6	
CH ₃ -O	58.2	58.5	55.4	55.2	55.8	55.4	-	Overlap wtih PP	
C1'	47.6	51.4	51.8	48.1	52.8	51.8	-	Overlap with PP	
PC4'	41.2	42.4	43.3	41.7	42.0	41.5	-	39.7**	
C2'	33.5	34.7	29.8	34.1	34.6	29.8	-	33.6**	
C3'	24.9	26.2	23.4	29.3	31.1	25.6	-	24.6*	
C5'	19.6	21.2	19.8	20.5	21.1	19.8	-	Overlap with PP	
C1 (CO ₂ -K+)	-	-	-	-	-	-	186.5; 185.6	184.2; 182.4; 180.6	
C1'arom.	-	-	-	-	-	-	148.4		
C2'arom.	-	-	-	-	-	-	129.6; 127.8		
C2, C3,	-	-	-	-	-	-	57.4; 46.8	55.5; 45.7	
C4, C5							57.4; 46.8	55.5; 45.7	
C6	-	-	-	-	-	-	30 - 10		

^(a)Solid-state ¹³C CPMAS, this work; ^(b)Solution (CDCl₃) ¹³C diprotonated (Clark et al., 1981); ^(c) simulation diprotonated, Topspin 4.0.8.; ^(d)Solution (CDCI₃) free base (Clark et al. 1981); ^(e)simulation, free base, ChemBioDraw Ultra 12.0 (Brondz, 2012); ^(f)simulation, free base, Topspin 4.0.8. * loss of definition; ** increase in width.

Table 3: Chemical shifts (δ , ppm), and relaxation times T_{CH} and T1_PH

Dissolution test and Taste Masking

In the pH 1.2 dissolution test, the PRQ-complex exhibited a rapid drug release, with 94.5% ± 0.87% released in the first 5 minutes, suggesting no bioavailability issues in acidic conditions. Furthermore, in simulated saliva at pH 6.8, the resinate only released approximately 1.97% in 30 seconds, demonstrating effective taste masking due to the minimal amount of PRQ released in this condition.

CONCLUSION

- A The results showed that complexation with ion exchange resins does not entirely remove primaguine's bitter taste but significantly reduces its perception.
- ^A The complexation of PRQ with IER presented a high drug loading efficiency and the complexation was demonstrated by DSC and by solid - state NMR analysis.
- A Proceeding with the following development stages is feasible to create a new and palatable oral formulation of primaguine resinate for children.

Figure 5: ¹³C CPMAS NMR spectra of the samples evaluated. The carbon signals are numbered following the structures presented in Fig. 4. (*) denotes spinning sidebands.

tained for samples PRQ, PP and PRQ-PP resinate.										
CARBON	PRQ			PP resin			PRQ-PP resinate			
	δ, ppm ^a	Τ _{CH} (μs)	T1ρH (ms)	δ, ppm	Τ _{CH} (μs)	T1ρH (ms)	δ, ppm	Τ _{CH} (μs)	T1ρH (ms)	
C6	159.5	n.d.	n.d.	-	-	-	159.0	n.d.	n.d.	
C8	140.6	636	265	-	-	-	144.0*	327	12.3	
C2	138.6	1220	336	-	-	-	144.0*	327	12.3	
C8a	133.4	483	246	-	-	-	134.7	n.d.	n.d.	
C4	130.8	n.d.	n.d.	-	-	-	130.2	n.d.	n.d.	
C4a	123.9	n.d.	n.d.	-	-	-	121.7*	n.d.	n.d.	
C3	119.6	511	251	-	-	-	121.7*	n.d.	n.d.	
C7	100.7	507	246	-	-	-	97.7	n.d.	7.3	
C5	94.0	497	231	-	-	-	91.6	427	9.8	
CH ₃ -O	58.2	597	304	-	-	-	Overlap with PP	-	-	
C1'	47.6	402	184	-	-	-	Overlap with PP	-	-	
C4'	41.2	373	183	-	-	-	39.7	241	6.1	
C2'	33.5	341	181	-	-	-	33.6	388	n.d.	
C3'	24.9	402	191	-	-	-	24.6*	345	6.7	
C5'	19.6	n.d.	n.d.	-	-	-	20.4*	266	9.4	
1 (CO ₂ ⁻ K+)	-	-	-	186.5	1930	9.7	182.9	741	8.4	
C1'arom.	-	-	-	148.4	n.d.	n.d.	n.d.	n.d.	n.d.	
2'arom.	-	-	-	129.6	n.d.	n.d.	n.d.	n.d.	n.d.	
				127.8	n.d.	n.d.	n.d.	n.d.	n.d.	
C3, C4, C5				~57	99	9.4	n.d.	n.d.	n.d.	
C3, C4, C5	-	-	-	~47	640	9,0	n.d.	n.d.	n.d.	
C6	-	-	-	18	355	11 7	19.3	266	9.4	

^(a) assignment suggested. * signal not properly defined

NMR analysis showed that all the carbon signals could be assigned, including those linked to the IER polacrilin potassium. A strong increase in the width of quinoline moiety, and a decrease in T1pH values confirmed the interaction between PRQ and IER moieties.

REFERENCES

- 1 Guimarães, T. F.; Vital, I. C. F.; Sousa, E. G. R.; et al. Investigation of Chloroquine Resinate Feasibility and In Vitro Taste Masking Evaluation for Pediatric Formulations. AAPS PharmSciTech 2022, 23 (2), 69.
- 2 Guimarães, T. F.; Sousa, E. G. R.; Matos, A. P. S.; et al. Is the mefloquine-ion exchange resin complex a feasible option for taste masking pediatric formulations? In 15th Annual Conference European Paediatric Formulation Initiative, Glasgow, UK, 19th - 21st September 2023.

CNPQ supported this work.

3 - Ranmal, S. R. et al. Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for

Low-Resource Settings. *Pharmaceutics* 2023, 15(7).

Colorcon do Brasil kindly provided ion exchange resin. Inova Fiocruz/VPCCB and

4 - Silva, R. C. A. et al. Quantitative ⁽¹⁾H NMR method for analyzing primaquine diphosphate in active pharmaceutical ingredients. J Pharm

Biomed Anal 2022, 210, 114585.